
QUDA ON GPUS

March 2016
Brookhaven National Laboratory

Q
C

D
 o

n
G

PU
s

Contents
▪GPUs

▪QUDA

▪Multigrid and Hierarchical Algorithms

▪Exascale

Peak Double Precision FLOPS

0

750

1500

2250

3000

2008 2009 2010 2011 2012 2013 2014

NVIDIA GPU x86 CPU

M2090

M1060

K20

K80

Westmere
Sandy Bridge

Haswell

GFLOPS Peak Memory Bandwidth

0

125

250

375

500

2008 2009 2010 2011 2012 2013 2014

NVIDIA GPU x86 CPU

GB/s

K20

K80

Westmere
Sandy Bridge

Haswell
Ivy Bridge

K40

Ivy Bridge

K40

M2090

M1060

Q
C

D
 o

n
G

PU
s

What is a GPU?
• Kepler K20X (2012)

– 2688 processing cores
– 3995 SP Gflops peak

• Effective SIMD width of 32 threads (warp)
• Deep memory hierarchy
• As we move away from registers

– Bandwidth decreases
– Latency increases

• Programmed using a thread model
– Architecture abstraction is known as CUDA
– Fine-grained parallelism required

• Diversity of programming languages
– CUDA C/C++/Fortran
– OpenACC, OpenMP 4.0
– Python, etc.

Device MemoryDevice Memory

Multiprocessor 1

Core
1

Core
2

Core
32

 . . .

Multiprocessor 2

Core
1

Core
2

Core
32

 . . .

Multiprocessor n

Core
1

Core
2

Core
32

 . . .

 . . .

RegistersRegisters RegistersRegisters RegistersRegisters

177 GB/s

 1.345 TB/s

L2 CacheL2 Cache

Sh
Mem

Sh
Mem

 10.76 TB/s

TexTex Sh
Mem

Sh
Mem TexTex Sh

Mem

Sh
Mem TexTexL1 L1 L1

Host MemoryHost Memory

8.0 GB/s per directionPCIe

 280 GB/s

O
n

 c
h

ip
O

ff
 c

h
ip

250 GB/s

500 GB/s

2.5 TB/s

2.5 TB/s

192 192 192192 192 192

Q
C

D
 o

n
G

PU
s QUDA

• “QCD on CUDA” – http://lattice.github.com/quda (open source)
• Effort started at Boston University in 2008, now in wide use as the GPU

backend for BQCD, Chroma, CPS, MILC, TIFR, tmQCD, etc.
– Latest release 0.8.0 (8th February 2016)

• Provides:
— Various solvers for all major fermionic discretizations, with multi-GPU support
— Additional performance-critical routines needed for gauge-field generation
— Gauge fixing, pure gauge evolution, link smearing, etc.

• Maximize performance
– Exploit physical symmetries to minimize memory traffic
– Mixed-precision methods
– Autotuning for high performance on all CUDA-capable architectures
– Domain-decomposed (Schwarz) preconditioners for strong scaling
– Eigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR)
– Multigrid solvers for optimal convergence

• A research tool for how to reach the exascale

http://lattice.github.com/quda

Q
C

D
 o

n
G

PU
s

In the QUDA Pipeline
▪ Dramatically improved 4-d domain-wall performance
▪ Drastically improved strong scaling
▪ Intra node - direct communication between GPUs (no MPI)
▪ GPU Direct Async - NIC and GPU can synchronize with no CPU
▪ Improved deflation algorithms
▪ Stout smearing
▪ Multi-right-hand-side solvers
▪ Communication avoiding solvers (s-step)
▪ Improved reduction support (including quad-precision)

Q
C

D
 o

n
G

PU
s

QUDA collaborators
§ Ron Babich (NVIDIA)
§ Michael Baldhauf (Regensburg)
§ Kip Barros (LANL)
§ Rich Brower (Boston University)
§ Nuno Cardoso (NCSA)
§ Michael Cheng (Boston University)
§ Carleton DeTar (Utah University)
§ Justin Foley (Utah -> NIH)
§ Joel Giedt (Rensselaer Polytechnic Institute)
§ Steve Gottlieb (Indiana University)
§ Bálint Joó (Jlab)
§ Hyung-Jin Kim (BNL -> Samsung)
§ Claudio Rebbi (Boston University)
§ Guochun Shi (NCSA -> Google)
§ Mario Schröck (INFN)
§ Alexei Strelchenko (FNAL)
§ Alejandro Vaquero (INFN)
§ Mathias Wagner (NVIDIA)
§ Frank Winter (Jlab)

Q
C

D
 o

n
G

PU
s

Mapping the Dirac operator to CUDA
• Finite difference operator in LQCD is known as Dslash
• Assign a single space-time point to each thread

– V = XYZT threads, e.g., V = 244 => 3.3x106 threads

• Looping over direction each thread must
– Load the neighboring spinor (24 numbers x8)

– Load the color matrix connecting the sites (18 numbers x8)

– Do the computation

– Save the result (24 numbers)

• Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity
• QUDA reduces memory traffic

– Exact SU(3) matrix compression (18 => 12 or 8 real numbers)
– Similarity transforms to increase operator sparsity
– Use 16-bit fixed-point representation

• No loss in precision with mixed-precision solver
• Almost a free lunch (small increase in iteration count)

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

D
x,x

0 =
x x

x

x−

x−

U x

U
x

μ

μ

ν

Q
C

D
 o

n
G

PU
s

Kepler Wilson-Dslash Performance

8 16 32 64 128
Temporal Extent

200

300

400

500

600

700

800

G
FL

O
PS

Half 8 GF
Half 8
Half 12
Single 8 GF
Single 8
Single 12

Wilson Dslash
K20X performance
V = 243xT

Q
C

D
 o

n
G

PU
s

Strong Scaling Chroma with DD

Preliminary, NVIDIA Confidential – not for distribution

Chroma (Lattice QCD) –
High Energy & Nuclear Physics

Chroma
483x512 lattice
Relative Scaling (Application Time)

XK7 (K20X) (BiCGStab)

XK7 (K20X) (DD+GCR)

XE6 (2x Interlagos)

0

2

4

6

8

10

12

14

16

18

0 128 256 384 512 640 768 896 1024 1152 1280

R
el

at
iv

e
Sc

al
in

g

Nodes

3.58x vs. XE6
@1152 nodes

“XK7” node = XK7 (1x K20X + 1x Interlagos)
“XE6” node = XE6 (2x Interlagos)

Q
C

D
 o

n
G

PU
s

Wide deployment on GPU clusters
▪ Clover RHMC on Titan and Blue

Waters (Chroma)
▪ Staggered RHMC @ FNAL (MILC)
▪ Nuclear physics @ Jlab (Chroma)

Title

Se
co

nd
s

0

1000

2000

3000

4000

Number of Nodes

16 32 64 128 256

Total Clover Solver
Gauge Force PCIe Fermion Force

▪ Clover RHMC running @ TIFR
(MILC)

▪ Thermodynamics @ TIFR
▪ Twisted-mass @ INFN
▪ etc.

Clover RHMC @ TIFR

MULTIGRID AND  
HIERARCHICAL ALGORITHMS

Q
C

D
 o

n
G

PU
s

Why Multigrid?

-0.43 -0.42 -0.41 -0.4
mass

100

1000

10000

1e+05

D
ir

ac
 o

p
er

at
o

r
ap

p
li

ca
ti

o
n

s

32
3
96 CG

24
3
64 CG

16
3
64 CG

24
3
64 Eig-CG

16
3
64 Eig-CG

32
3
96 MG-GCR

24
3
64 MG-GCR

16
3
64 MG-GCR

20 vectors

240 vectors

Babich et al 2010

Q
C

D
 o

n
G

PU
s

Hierarchical algorithms for LQCD
▪ Hierarchical algorithms have revolutionized LQCD computation
▪ Adaptive Geometric Multigrid for LQCD
—Based on adaptive smooth aggregation (Brezina et al 2004)
—Low modes have weak-approximation property => locally co-linear
—Apply fixed geometric coarsening (Brannick et al 2007, Babich et al 2010)
▪Clover Multigrid (Osborn et al 2010)
—Apply multigrid to the even/odd system
▪ Domain decomposition multigrid (Frommer et al 2012)
—Use Schwarz Alternating Procedure as smoother for improved scalability
▪ Inexact Deflation (Lüscher 2007)
—Equivalent to adaptive “unsmoothed” aggregation
—Local coherence = Weak-approximation property
—Uses an additive correction vs. MG’s multiplicative correction
▪Domain-wall Multigrid / Deflation (Cohen et al 2012, Boyle 2013)
—Apply to normal operator for positivity

Q
C

D
 o

n
G

PU
s

The Challenge of Multigrid on GPU

• GPU requirements very different from CPU
– Each thread is slow, but O(10,000) threads per GPU

• Fine grids run very efficiently
– High parallel throughput problem

• Coarse grids are worst possible scenario
– More cores than degrees of freedom
– Increasingly serial and latency bound
– Little’s law (bytes = bandwidth * latency)
– Amdahl’s law limiter

• Multigrid exposes many of the problems
expected at the Exascale

• Multigrid decomposes problem into
throughput and latency parts

Q
C

D
 o

n
G

PU
s Hierarchical algorithms on

heterogeneous architectures

Thousands of cores
for parallel processing

Few Cores optimized
for serial work

CPU

GPU

PCIe

Q
C

D
 o

n
G

PU
s

Design Goals
• Performance

– LQCD typically reaches high % peak peak performance
– Brute force can beat the best algorithm
– Multigrid must be optimized to the same level

• Flexibility
– Deploy level i on either CPU or GPU
– All algorithmic flow decisions made at runtime
– Autotune for a given heterogeneous

• (Short term) Provide optimal solvers to legacy apps
– e.g., Chroma, CPS, MILC, etc.

• (Long term) Hierarchical algorithm toolbox
– Little to no barrier to implementing new algorithms

Q
C

D
 o

n
G

PU
s

Multigrid and QUDA
• QUDA designed to abstract algorithm from the heterogeneity

LatticeField

ColorSpinorField GaugeField

cudaColorSpinorField cpuColorSpinorField cpuGaugeFieldcudaGaugeField

Q
C

D
 o

n
G

PU
s

Multigrid and QUDA
• QUDA designed to abstract algorithm from the heterogeneity

LatticeField

ColorSpinorField GaugeField

cudaColorSpinorField cpuColorSpinorField cpuGaugeFieldcudaGaugeField

Algorithms

Q
C

D
 o

n
G

PU
s

Multigrid and QUDA
• QUDA designed to abstract algorithm from the heterogeneity

LatticeField

ColorSpinorField GaugeField

cudaColorSpinorField cpuColorSpinorField cpuGaugeFieldcudaGaugeField

Architecture

Q
C

D
 o

n
G

PU
s

Writing the same code for two architectures

template<…> void fooCPU(Arg &arg) {
 arg.sum = 0.0;
#pragma omp for
 for (int x=0; x<size; x++)
 arg.sum += bar<…>(arg, x);
}

template<…> __global__ void fooGPU(Arg arg) {
 int tid = threadIdx.x + blockIdx.x*blockDim.x;
 real sum = bar<…>(arg, tid);
 __shared__ typename BlockReduce::TempStorage tmp;
 arg.sum = cub::BlockReduce<…>(tmp).Sum(sum);
}

CPU GPU

template<…> __host__ __device__ Real bar(Arg &arg, int x) {
 // do platform independent stuff here
 complex<Real> a[arg.length];
 arg.A.load(a);

 … // do computation

 arg.A.save(a);
 return norm(a);
}

platform specific parallelization  
GPU: shared memory
CPU: OpenMP, vectorization

platform specific load/store hidden here:
field order, cache modifiers, textures platform independent stuff goes here  

99% of computation goes here

• Use C++ templates to abstract arch specifics
– Load/store order, caching modifiers, precision, intrinsics

Q
C

D
 o

n
G

PU
s

Ingredients for Parallel Adaptive Multigrid
▪ Prolongation construction (setup)
– Block orthogonalization of null space vectors
– Batched QR decomposition

▪ Smoothing (relaxation on a given grid)
– Repurpose existing solvers (DD preconditioner)

▪ Prolongation
– interpolation from coarse grid to fine grid
– one-to-many mapping

▪ Restriction
– restriction from fine grid to coarse grid
– many-to-one mapping

▪ Coarse Operator construction (setup)
– Evaluate R A P locally
– Batched (small) dense matrix multiplication

▪ Coarse grid solver
– direct solve on coarse grid?
– (near) serial algorithm

x
x

x

x−

x−

U x

U
x

μ

μ

ν

x x

x

x−

x−

U x

U
x

μ

μ

ν

Q
C

D
 o

n
G

PU
s

Coarse Grid Operator Analysis
▪ Coarse operator looks like a Dirac operator
– Link matrices have dimension 2Nv x 2Nv (e.g., 48 x 48)

▪ Fine vs. Coarse grid parallelization
– Fine grid operator has plenty of grid-level parallelism
– E.g., 164 = 65536 lattice sites

– Coarse grid operator has diminishing grid-level parallelism
– first coarse grid 44 = 256 lattice sites
– second coarse grid 24 = 16 lattice sites

▪ Current GPUs have up to 3072 processing cores

▪ Need to consider finer-grained parallelization
– Increase parallelism to use all GPU resources
– Load balancing

dofs (geometry). We start by defining the fields

W±µ
ksĉ,ls�ĉ� = V †

ksc,ksĉP
±µ
s,s�U(k+µ)c,lc��k+µ,lVls�c�,lŝ�ĉ�

note that here we are defining di�erent links for forward and backwards,
they are not simply the conjugate of each other (because of the di�erent spin
projection between the two). Also note that these e�ective link matrices have
also a spin index, this is because the vectors used to define the V rotation
matrices have spin dependence now. In this form we can now write down the
coarse Dirac operator as

D̂iŝĉ,jŝ�ĉ� = �
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

ksĉ,ls�ĉ��k+µ,l + W+µ†
ksĉ,ls�ĉ��k�µ,l

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥

+M �iŝĉ,jŝ�ĉ� .

We now finish up by blocking the geometry and spin onto the coarse lattice,
defining the e�ective link matrices Y ±µ that connect sites on the coarse
lattice:

Y ±µ
iŝĉ,jŝ�ĉ� =

�
�i,k/B�ŝ,s/Bs

⇥
W±µ

ksĉ,ls�ĉ�

�
�l/B,j�s�/Bs,ŝ�

⇥
�i⇤µ,j (2)

Xiŝĉ,jŝ�ĉ� =
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

iŝĉ,kŝ�ĉ� + W+µ†
iŝĉ,kŝ�ĉ�

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥
�i,j,

where we note now that the matrix X is not Hermitian. Thus the coarse
operator is written

D̂iŝĉ,jŝ�ĉ� = �
⇤

µ

⌅
Y �µ

iŝĉ,jŝ�ĉ��i+µ,j + Y +µ†
isĉ,js�ĉ��i�µ,j

⇧
+ (M �Xiŝĉ,jŝ�ĉ�) �iŝĉ,jŝ�ĉ� . (3)

For the explicit form of these matrices we refer the reader to Appendix A.
After the first blocking, subsequent blockings require that Bs = 1, i.e., we

cannot block the spin dimension again since we cannot remove the chirality.
Apart from this observation, the next coarse operator will have a similar form
to the current one: it will be a nearest neighbour non-Hermitian operator
connecting sites with ds = 2 spin dimension (in 2d and 4d anyway).

We note here in passing that because of the definition of the matrix field V
include explicit spin dependence, this destroys the tensor product structure
of the spin and colour on the coarse operator, i.e., we have to define an
e�ective link matrix that rotates in spin and colour space. If this were not
the case, i.e., if V were to be spin independent, then this structure would be

8

x
x

x

x−

x−

U x

U
x

μ

μ

ν

Q
C

D
 o

n
G

PU
s

Sources of Parallelism

▪ Site-level parallelism (i index)
▪ Trivially data parallel
▪ Spin and color output index (s and c indices)
▪ Trivially data parallel
▪ Stencil direction (µ index)
▪ Loosely coupled parallelism (gather)
▪ Spin and color input index (s' and c’ indices)
▪ Tightly coupled parallelism (dot product)

dofs (geometry). We start by defining the fields

W±µ
ksĉ,ls�ĉ� = V †

ksc,ksĉP
±µ
s,s�U(k+µ)c,lc��k+µ,lVls�c�,lŝ�ĉ�

note that here we are defining di�erent links for forward and backwards,
they are not simply the conjugate of each other (because of the di�erent spin
projection between the two). Also note that these e�ective link matrices have
also a spin index, this is because the vectors used to define the V rotation
matrices have spin dependence now. In this form we can now write down the
coarse Dirac operator as

D̂iŝĉ,jŝ�ĉ� = �
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

ksĉ,ls�ĉ��k+µ,l + W+µ†
ksĉ,ls�ĉ��k�µ,l

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥

+M �iŝĉ,jŝ�ĉ� .

We now finish up by blocking the geometry and spin onto the coarse lattice,
defining the e�ective link matrices Y ±µ that connect sites on the coarse
lattice:

Y ±µ
iŝĉ,jŝ�ĉ� =

�
�i,k/B�ŝ,s/Bs

⇥
W±µ

ksĉ,ls�ĉ�

�
�l/B,j�s�/Bs,ŝ�

⇥
�i⇤µ,j (2)

Xiŝĉ,jŝ�ĉ� =
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

iŝĉ,kŝ�ĉ� + W+µ†
iŝĉ,kŝ�ĉ�

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥
�i,j,

where we note now that the matrix X is not Hermitian. Thus the coarse
operator is written

D̂iŝĉ,jŝ�ĉ� = �
⇤

µ

⌅
Y �µ

iŝĉ,jŝ�ĉ��i+µ,j + Y +µ†
isĉ,js�ĉ��i�µ,j

⇧
+ (M �Xiŝĉ,jŝ�ĉ�) �iŝĉ,jŝ�ĉ� . (3)

For the explicit form of these matrices we refer the reader to Appendix A.
After the first blocking, subsequent blockings require that Bs = 1, i.e., we

cannot block the spin dimension again since we cannot remove the chirality.
Apart from this observation, the next coarse operator will have a similar form
to the current one: it will be a nearest neighbour non-Hermitian operator
connecting sites with ds = 2 spin dimension (in 2d and 4d anyway).

We note here in passing that because of the definition of the matrix field V
include explicit spin dependence, this destroys the tensor product structure
of the spin and colour on the coarse operator, i.e., we have to define an
e�ective link matrix that rotates in spin and colour space. If this were not
the case, i.e., if V were to be spin independent, then this structure would be

8
24 => 24576-way parallel

Nvec=24

Q
C

D
 o

n
G

PU
s

Coarse Grid Operator Performance
Vfine = 163x64, Vcoarse = 43x16, FP32, no reconstruction, Quadro M6000

G
FL

O
PS

0

125

250

375

500

Wilson Nv=4 Nv=8 Nv=12 Nv=16 Nv=20 Nv=24

coarse-grained split spin split spin / color
split spin / color / gather dir

97% STREAM bandwidth

Q
C

D
 o

n
G

PU
s

Coarse Dslash Performance
8-core Haswell 2.4 GHz (solid line) vs M6000 (dashed lined)

0 20 40 60 80 100
2N

0

50

100

150

200

250

300
G

FL
O

PS

2x2x2x2
4x2x2x2
4x2x2x4
4x2x4x4
4x4x4x4

Coarse Dslash performance (8-core Haswell 2.4 GHz vs M6000)
Solid symbol CPU, open symbol / dashed line GPU

CPU in cache

CPU out-of cache

▪ Autotuner finds optimum
degree of parallelization
▪ Larger grids favor less fine

grained
▪ Coarse grids favor most fine

grained

▪ GPU is nearly always
faster than CPU

▪ Expect in future that
coarse grids will favor
CPUs

▪ For now, use GPU
exclusively

Q
C

D
 o

n
G

PU
s

Results
▪ Compare MG against the best traditional clover Krylov solver
▪ BiCGstab in double/half precision
▪ 12/8 reconstruct
▪ Even-odd preconditioning

▪ Adaptive Multigrid algorithm
▪ GCR outer solver wraps 3-level MG preconditioner
▪ GCR restarts done in double, everything else in single
▪ 24 or 32 null-space vectors on fine grid
▪ Minimum Residual smoother
▪ Even-odd preconditioning

Q
C

D
 o

n
G

PU
s

Multigrid versus BiCGstab
Anisotropic Wilson, V = 243x64, 3x Quadro M6000

Ti
m

e
to

 s
ol

ut
io

n

0

2

4

6

8

10

12

Mass parameter

-0.42 -0.415 -0.410 -0.405 -0.40

BiCGstab (double-half) GCR-MG (double-single)

Iterations GFLOPs

mass BiCGstab GCR-MG BiCGstab GCR-MG

-0.400 251 15 980 376

-0.405 372 16 980 372

-0.410 510 17 980 353

-0.415 866 18 980 314

-0.420 3103 19 980 293

Q
C

D
 o

n
G

PU
s

QUDA MG QUDA BiCGStab Speedup
Iterations Time (sec) Iterations Time (sec)
18 1.90 1811 17.98 9.46
18 1.89 1582 15.63 8.27
18 1.85 1613 16.02 8.66
19 2.02 1644 16.29 8.06
19 2.01 1788 17.67 8.79
18 1.90 1940 19.19 10.10
18 1.89 1568 15.58 8.24
19 2.00 1698 16.88 8.44
19 2.03 1914 18.98 9.35
18 1.85 1589 15.76 8.52
18 1.91 1735 17.16 8.98
Average 1.93 17.01 8.81

Multigrid vs BiCGstab
Anisotropic Clover, V = 403x256, mπ = 230 MeV, light quark, 32 nodes of Titan

Q
C

D
 o

n
G

PU
s Titan Scaling

Clover, 403x256 210 mπ, 483x96 / 643x128 192 MeV mπ

16 32 64 128 256 512
Number of Nodes

1

2

4

8

16

32

Ti
m

e
to

 S
ol

ut
io

n

GCR-MG 403x256
BiCGstab 403256
GCR-MG 48396
BiCGstab 48396
GCR-MG 643128
BiCGstab 643128

Q
C

D
 o

n
G

PU
s

Multigrid Summary and Future Work
▪ Up to 10x speedups observed with multigrid
▪ Exploiting fine-grained parallelism was key
▪ Coarse solve dominates at large node count

▪ Lots more work to do
▪ Strong scaling improvements
▪ Absolute Performance tuning, e.g., half precision
▪ Accelerate coarse grid solver: deflation or direct solve?
▪ More flexible coarse grid distribution, e.g., redundant nodes

▪ Investigate off load coarse grids to the CPU
▪ Use CPU and GPU simultaneously using additive MG
▪ Likely optimal in the strong scaling limit

THE FUTURE

34

Introducing NVLINK and Stacked Memory

NVLINK
GPU high speed interconnect
80-200 GB/s
Planned support for POWER CPUs

Stacked Memory
4x Higher Bandwidth (~1 TB/s)
3x Larger Capacity
4x More Energy Efficient per bit

Introduced with Pascal in 2016

Q
C

D
 o

n
G

PU
s

GPU Computing in 2016
NVLink Enables Data Transfer At

Speed of CPU Memory

TESLA
GPU

CPU

DDR Memory Stacked Memory

NVLink
80 GB/s

DDR4
50-75 GB/s

HBM
1 Terabyte/s

M
IL

C
 o

n
G

PU
s

30

US to Build Two Flagship Supercomputers
Powered by the Tesla Platform

100-300 PFLOPS Peak

10x in Scientific App Performance

IBM POWER9 CPU + NVIDIA Volta GPU

NVLink High Speed Interconnect

40 TFLOPS per Node, >3,400 Nodes

2017

Major Step Forward on the Path to Exascale

37

Just 4 nodes in Summit  
would make the Top500 list of

supercomputers today

Similar Power as Titan
5-10x Faster

1/5th the Size

150 PF = 3M Laptops
One laptop for Every Resident in

State of Mississippi

LQCD Performance with GPU generation
Single Precision Wilson-Dslash performance, V=244

0

450

900

1350

1800

G80 GT200 Fermi Kepler Pascal Volta
(estimated)

G
FL

O
P

S

(estimated)

Temporal 
locality

Improved  
L2 cache

Stacked  
memory

Q
C

D
 o

n
G

PU
s

How to get to the Exascale (and beyond)?
▪ Four challenges to overcome
▪ Communication
▪ Latency
▪ Parallelism
▪ Locality

▪What’s the answer to all  
of the above?

Q
C

D
 o

n
G

PU
s

How to get to the Exascale (and beyond)?
▪ Four challenges to overcome
▪ Communication
▪ Latency
▪ Parallelism
▪ Locality

▪What’s the answer to all  
of the above?

K Jansen

Q
C

D
 o

n
G

PU
s

How to get to the Exascale (and beyond)?
▪ Four challenges to overcome
▪ Communication
▪ Latency
▪ Parallelism
▪ Locality

▪What’s the answer to all  
of the above?

Algorithms
*and the ability to express  

and utilize those algorithms

K Jansen

Q
C

D
 o

n
G

PU
s

Example: Multi-right-hand-side Dslash
Improved staggered, volume = 244, single precision, no reconstruction
G

FL
O

PS
 p

er
 G

PU

0

225

450

675

900

Number of rhs

1 2 3 4 5 6 7 8 9 10

Fermi
Kepler
Maxwell

More Locality, more Parallelism and less latency

Q
C

D
 o

n
G

PU
s

Software and Algorithms
▪ Solvers continue to innovate rapidly
▪ Communication avoiding Krylov solvers (Demmel et al)

▪ Cooperative Krylov methods (Bhaya et al)

▪ Enlarged Krylov space methods (Grigori et al)

▪ Software can be the problem
▪ Hierarchical grids breaks most LQCD frameworks
▪ Used to calling solvers in a serial fashion
▪ Precision is often baked in

Q
C

D
 o

n
G

PU
s Fine-grained Parallelism and the

Implications for DSLs
▪ Traditional DSL approach is to abstract the grid parallelism

▪ Compiler / front end will then transform this expression into a
data parallel operation using OpenMP / CUDA / C++ meta
template magic, etc.

▪ This abstraction breaks with multigrid
▪ Not enough grid parallelism

▪ Platform and algorithmic independent conjecture
“Fine-grained parallelization will becoming increasingly a
requirement at the Exascale (and beyond)”  

Matrix u;
Vector x, y;
y = u * x;

Q
C

D
 o

n
G

PU
s

Dslash Strong Scaling
K40, wilson, half precision, 8-way communication, 12 reconstruct

G
FL

O
PS

0

150

300

450

600

8 12 16 20 24 28 32

model
0.6
0.7
0.8
single

Lattice Length

Performance limited by
occupancy not
communication

Q
C

D
 o

n
G

PU
s

Communication at the Exascale
▪ Traditional two-sided MPI will not scale
▪ Overheads will dominate communication
▪ Expect machine-wide unified address space
▪ Every CPU/GPU can read/write directly to each other
▪ SHMEM / UPC / MPI-3 everywhere

▪ Utilize the GPU’s fine-grained latency hiding through thread
oversubscription to hide inter-node latency
▪ LQCD is an ideal application for this programming model

▪ QUDA is one of the applications being investigated in the DOE’s
“DesignForward” Exascale programming investigation

Q
C

D
 o

n
G

PU
s

Conclusions and Outlook
▪ GPUs provide a compelling platform for lattice computation

▪ Multigrid algorithms are running well on GPUs
▪ Much more work to do
▪ Fine-grained parallelization is key
▪ Glimpse into the challenges of the exascale

▪ Importance of algorithms will only increase

▪ Exascale potentially challenging from a software point of view

Q
C

D
 o

n
G

PU
s

Adaptive Geometric Multigrid
• Adaptively find candidate null-space vectors

– Dynamically learn the null space and use this to  
define the prolongator

– Algorithm is self learning
• Setup

1. Set solver to be simple smoother
2. Apply current solver to random vector vi = P(D) ηi
3. If convergence good enough, solver setup complete
4. Construct prolongator using fixed coarsening (1 - P R) vk = 0
➡ Typically use 44 geometric blocks
➡ Preserve chirality when coarsening R = γ5 P† γ5 = P†

5. Construct coarse operator (Dc = R D P)
6. Recurse on coarse problem
7. Set solver to be augmented V-cycle, goto 2

Q
C

D
 o

n
G

PU
s

Halo Region Updates (QUDA 0.7)
▪ Best way to reduce latency all round is kernel fusion
▪ Reduces API calls
▪ Reduces kernel launch overhead
▪ Increases GPU occupancy
▪ Previous multi-GPU dslash had 6 kernels
▪ pack (all faces), interior, halo_t, halo_z, halo_y, halo_x

▪ This puts a lower bound on the minimum time taken regardless
of the speed of the GPU execution

▪ Fused multi-GPU dslash now has 3 kernels halving lower bound
▪ pack (all faces), interior, halo (all faces)

▪ Scope for further fusing if we consider Deo Doe together
▪ pack -> interior -> halo -> pack -> interior -> halo

Q
C

D
 o

n
G

PU
s

Other improvements
▪ Double buffering of QMP/MPI receive buffers (QUDA 0.7)
▪ Early pre-posting of MPI Receive
▪ Dslash has been rewritten using pthreads to parallelize between

independent MPI and CUDA API calls (QUDA 0.8)
▪ Parallelize between CUDA -> MPI and MPI -> CUDA dependent operations.

E.g., waiting on MPI in t dimension while waiting on device -> host copy in
z dimension

▪ Improvement to half-precision latency (QUDA 0.8)
▪ Previously norm field was stored in separate halo region
▪ Now store in same array as main quark field
▪ Halves host -> device API calls
▪ Increases message size for improved throughput

Q
C

D
 o

n
G

PU
s

What is limiting strong scaling?

Q
C

D
 o

n
G

PU
s

What is limiting strong scaling?
▪ GPU kernel / memcpy launch overhead (4-10 us)
▪ Reduce number of kernels / memcpy
▪ Use a single kernel for all halo regions (6->3 kernel calls) (0.7)

Q
C

D
 o

n
G

PU
s

What is limiting strong scaling?
▪ GPU kernel / memcpy launch overhead (4-10 us)
▪ Reduce number of kernels / memcpy
▪ Use a single kernel for all halo regions (6->3 kernel calls) (0.7)
▪ Halo region kernels don’t saturate the GPU
▪ Use a single kernel for all halo regions (4x threads) (0.7)

Q
C

D
 o

n
G

PU
s

What is limiting strong scaling?
▪ GPU kernel / memcpy launch overhead (4-10 us)
▪ Reduce number of kernels / memcpy
▪ Use a single kernel for all halo regions (6->3 kernel calls) (0.7)
▪ Halo region kernels don’t saturate the GPU
▪ Use a single kernel for all halo regions (4x threads) (0.7)

▪ MPI / CUDA can block each other from progressing
▪ Use pthreads to parallelize CUDA and MPI calls (0.8)

Q
C

D
 o

n
G

PU
s

What is limiting strong scaling?
▪ GPU kernel / memcpy launch overhead (4-10 us)
▪ Reduce number of kernels / memcpy
▪ Use a single kernel for all halo regions (6->3 kernel calls) (0.7)
▪ Halo region kernels don’t saturate the GPU
▪ Use a single kernel for all halo regions (4x threads) (0.7)

▪ MPI / CUDA can block each other from progressing
▪ Use pthreads to parallelize CUDA and MPI calls (0.8)

▪ PCIe bus contention on Multi-GPU nodes
▪ Use CUDA peer-to-peer API for direct communication (0.9)

Q
C

D
 o

n
G

PU
s

What is limiting strong scaling?
▪ GPU kernel / memcpy launch overhead (4-10 us)
▪ Reduce number of kernels / memcpy
▪ Use a single kernel for all halo regions (6->3 kernel calls) (0.7)
▪ Halo region kernels don’t saturate the GPU
▪ Use a single kernel for all halo regions (4x threads) (0.7)

▪ MPI / CUDA can block each other from progressing
▪ Use pthreads to parallelize CUDA and MPI calls (0.8)

▪ PCIe bus contention on Multi-GPU nodes
▪ Use CUDA peer-to-peer API for direct communication (0.9)
▪ MPI / CUDA have to interact synchronously via CPU
▪ GPU Direct Async coming with CUDA 8.0

Q
C

D
 o

n
G

PU
s

Mixed-precision solvers
▪ QUDA has had mixed-precision from the get go
▪ Almost a free lunch where it works well (wilson/clover)
– Residual injection / reliable updates mixed-precision BiCGstab
– 2 Tflops sustained in workstation (4 GPUs)
▪ Did not work well for CG (staggered / twisted mass / dwf)
– double-single has increased iteration count
– double-half non convergent
▪Why is this?
– CG recurrence relations much more intolerant
– BiCGstab noisy as hell anyway
▪ Need to make CG more robust
– Make double-half work
– Less polishing in mixed-precision multi-shift solver

Q
C

D
 o

n
G

PU
s

(Stable) Mixed-precision CG
▪ CG convergence relies on gradient vector being orthogonal to

residual
– Re-project when injecting new residual
▪ α chosen to minimize |e|A
– True irrespective of precision of p, q, r
– Solution correction is truncated if we keep low precision x
– Always keep solution vector in high precision
▪ β computation relies on (ri,rj) = |ri|2 δij
– Not true in finite precision
– Polak-Ribière formula is equivalent and self-stabilizing  

through local orthogonality

▪ Further improvement possible
– Mining the literature on fault-tolerant solvers…

while (|rk|> ε) {
•βk = (rk,rk)/(rk-1,rk-1)
•pk+1 = rk - βkpk

 qk+1 = A pk+1
•α = (rk,rk)/(pk+1, qk+1)
•rk+1 = rk - αqk+1
•xk+1 = xk + αpk+1

•k = k+1
}

βk = α(α(qk,qk) - (pk,qk))/(rk-1,rk-1)

Q
C

D
 o

n
G

PU
s

0 20000 40000 60000 80000 1e+05
1e-08

0.0001

1

10000 double-half (naive)
double-half (new)
double

Comparison of staggered double-half solvers
V=164 m=0.001

Q
C

D
 o

n
G

PU
s

Multigrid vs BiCGstab
Anisotropic Clover, V = 403x256, mπ =230 MeV, strange quark, 32 nodes of Titan

QUDA MG QUDA BiCGStab Speedup
Iterations Time (sec) Iterations Time (sec)
12 1.74 178 2.19 1.25
12 1.74 167 2.04 1.18
12 1.74 186 2.24 1.29
12 1.77 163 2.01 1.13
12 1.74 171 2.04 1.18
12 1.74 184 2.26 1.29
12 1.75 173 2.09 1.19
12 1.73 161 1.94 1.12
12 1.74 179 2.20 1.26
12 1.73 208 2.53 1.46
12 1.73 163 1.97 1.14
12 1.74 169 2.06 1.19
Average 1.74 2.13 1.22

Q
C

D
 o

n
G

PU
s

Linear Solvers
▪ QUDA supports a wide range of linear solvers
– CG, BiCGstab, GCR, Multi-shift solvers, etc.

▪ As well as domain decomposition preconditioners
– Additive/Multiplicative Schwarz, overlapping domains

▪ Together with almost all fermion actions under the sun
– Wilson, Wilson-clover
– Twisted mass, degenerate and non degenerate twisted mass
– Twisted with a clover term
– HISQ, ASQTAD, naive staggered
– Domain wall, Möbius

▪ Condition number inversely proportional to mass
– Light (realistic) masses are highly singular
– Naive Krylov solvers suffer from critical slowing down at decreasing mass

while (|rk|> ε) {
•βk = (rk,rk)/(rk-1,rk-1)
•pk+1 = rk - βkpk

 qk+1 = A pk+1
•α = (rk,rk)/(pk+1, qk+1)
•rk+1 = rk - αqk+1
•xk+1 = xk + αpk+1

•k = k+1
}

conjugate
gradient

Q
C

D
 o

n
G

PU
s

Coarse Grid Operator Performance

0

75

150

225

300

Lattice length = V^{1/4}

12 10 8 6 4 2

Nvec=4 Nvec=16 Nvec=24 Nvec=32

